Unit 8, Lesson 13
 Cube Roots

Let's compare cube roots.

13.1 True or False: Cubed

Decide if each statement is true or false.
$(\sqrt[3]{5})^{3}=5$
$(\sqrt[3]{27})^{3}=3$
$7=(\sqrt[3]{7})^{3}$
$(\sqrt[3]{10})^{3}=1,000$
$(\sqrt[3]{64})=2^{3}$

13.2 Cube Root Values

What two whole numbers does each cube root lie between? Be prepared to explain your reasoning.

1. $\sqrt[3]{5}$
2. $\sqrt[3]{23}$
3. $\sqrt[3]{81}$
4. $\sqrt[3]{999}$

13.3 Solutions on a Number Line

The numbers x, y, and z are positive, and:

1. Plot x, y, and z on the number line. Be prepared to share your reasoning with the class.
2. Plot $-\sqrt[3]{2}$ on the number line.

Are you ready for more?

Diego knows that $8^{2}=64$ and that $4^{3}=64$. He says that this means the following are all true:

- $\sqrt{64}=8$
- $\sqrt[3]{64}=4$
- $\sqrt{-64}=-8$
- $\sqrt[3]{-64}=-4$

Is he correct? Explain how you know.

Lesson 13 Summary

Remember that square roots of whole numbers are defined as side lengths of squares. For example, $\sqrt{17}$ is the side length of a square whose area is 17 . We define cube roots similarly, but using cubes instead of squares. The number $\sqrt[3]{17}$, pronounced "the cube root of 17 ," is the edge length of a cube which has a volume of 17 .

We can approximate the values of cube roots by observing the whole numbers around it and remembering the relationship between cube roots and cubes. For example, $\sqrt[3]{20}$ is between 2 and 3 since $2^{3}=8$ and $3^{3}=27$, and 20 is between 8 and 27 . Similarly, since 100 is between 4^{3} and 5^{3}, we know $\sqrt[3]{100}$ is between 4 and 5 . Many calculators have a cube root function which can be used to approximate the value of a cube root more precisely. Using our numbers from before, a calculator will show that $\sqrt[3]{20} \approx 2.7144$ and that $\sqrt[3]{100} \approx 4.6416$.

Also like square roots, most cube roots of whole numbers are irrational. The only time the cube root of a number is a whole number is when the original number is a perfect cube.

