Unit 7, Lesson 8 Practice Problems

1. Select all the true statements:
A. $2^{8} \cdot 2^{9}=2^{17}$
B. $8^{2} \cdot 9^{2}=72^{2}$
C. $8^{2} \cdot 9^{2}=72^{4}$
D. $2^{8} \cdot 2^{9}=4^{17}$
2. Find x, y, and z if $(3 \cdot 5)^{4} \cdot(2 \cdot 3)^{5} \cdot(2 \cdot 5)^{7}=2^{x} \cdot 3^{y} \cdot 5^{z}$.
3. Han found a way to compute complicated expressions more easily. Since $2 \cdot 5=10$, he looks for pairings of $2 s$ and $5 s$ that he knows equal 10. For example, $3 \cdot 2^{4} \cdot 5^{5}=3 \cdot 2^{4} \cdot 5^{4} \cdot 5=(3 \cdot 5) \cdot(2 \cdot 5)^{4}=15 \cdot 10^{4}=150,000$. Use Han's technique to compute the following:
a. $2^{4} \cdot 5 \cdot(3 \cdot 5)^{3}$
b. $\frac{2^{3} \cdot 5^{2} \cdot(2 \cdot 3)^{2} \cdot(3 \cdot 5)^{2}}{3^{2}}$
4. The cost of cheese at three stores is a function of the weight of the cheese. The cheese is not prepackaged, so a customer can buy any amount of cheese.

- Store A sells the cheese for a dollars per pound.
- Store B sells the same cheese for b dollars per pound and a customer has a coupon for $\$ 5$ off the total purchase at that store.
- Store C is an online store, selling the same cheese at c dollar per pound, but with a $\$ 10$ delivery fee.

This graph shows the price functions for stores A, B, and C .

a. Match Stores A, B, and C with Graphs j, k, and ℓ.
b. How much does each store charge for the cheese per pound?
c. How many pounds of cheese does the coupon for Store B pay for?
d. Which store has the lowest price for a half a pound of cheese?
e. If a customer wants to buy 5 pounds of cheese for a party, which store has the lowest price?
f. How many pounds would a customer need to order to make Store C a good option?

