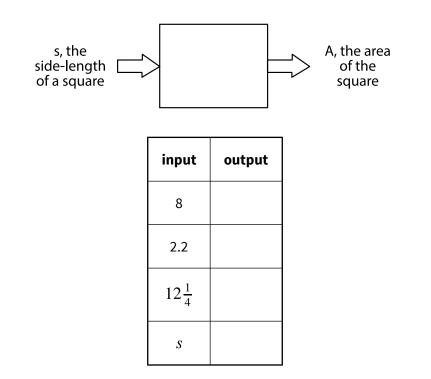
NAME

DATE

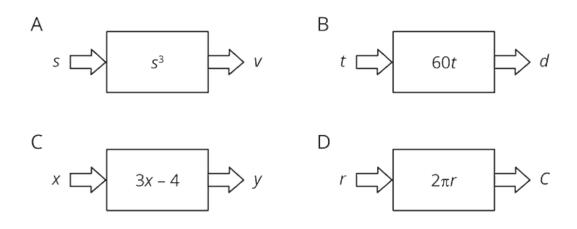

PERIOD

Unit 5, Lesson 3 Equations for Functions

Let's find outputs from equations.

3.1 A Square's Area

Fill in the table of input-output pairs for the given rule. Write an algebraic expression for the rule in the box in the diagram.


3.2 Diagrams, Equations, and Descriptions

Record your answers to these questions in the table provided:

1. Match each of these descriptions with a diagram:

NAME	DATE	PERIOD
------	------	--------

- a. the circumference, C, of a circle with radius, r
- b. the distance in miles, *d*, that you would travel in *t* hours if you drive at 60 miles per hour
- c. the output when you triple the input and subtract 4
- d. the volume of a cube, v, given its edge length, s
- 2. Write an equation for each description that expresses the output as a function of the input.
- 3. Find the output when the input is 5 for each equation.
- 4. Name the **independent** and **dependent variables** of each equation.

NAME				DATE	PERIOD	
	description	а	b	c	d	
	diagram					
	equation					
	input = 5 output = ?					
	independent variable					
	dependent variable					

➡ Are you ready for more?

Choose a 3-digit number as an input and apply the following rule to it, one step at a time:

- Multiply your number by 7.
- Add one to the result.
- Multiply the result by 11.
- Subtract 5 from the result.
- Multiply the result by 13
- Subtract 78 from the result to get the output.

Can you describe a simpler way to describe this rule? Why does this work?

NAME

DATE

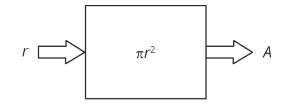
PERIOD

3.3 Dimes and Quarters

Jada had some dimes and quarters that had a total value of \$12.50. The relationship between the number of dimes, d, and the number of quarters, q, can be expressed by the equation 0.1d + 0.25q = 12.5.

- 1. If Jada has 4 quarters, how many dimes does she have?
- 2. If Jada has 10 quarters, how many dimes does she have?
- 3. Is the number of dimes a function of the number of quarters? If yes, write a rule (that starts with d = ...) that you can use to determine the output, d, from a given input, q. If no, explain why not.
- 4. If Jada has 25 dimes, how many quarters does she have?
- 5. If Jada has 30 dimes, how many quarters does she have?
- 6. Is the number of quarters a function of the number of dimes? If yes, write a rule (that starts with q = ...) that you can use to determine the output, q, from a given input, d. If no, explain why not.

Lesson 3 Summary


We can sometimes represent functions with equations. For example, the area, A, of a circle is a function of the radius, r, and we can express this with an equation:

$$A=\pi r^2$$

DATE

PERIOD

We can also draw a diagram to represent this function:

In this case, we think of the radius, r, as the input, and the area of the circle, A, as the output. For example, if the input is a radius of 10 cm, then the output is an area of 100π

cm², or about 314 square cm. Because this is a function, we can find the area, *A*, for any given radius, *r*.

Since it is the input, we say that r is the **independent variable** and, as the output, A is the **dependent variable**.

Sometimes when we have an equation we get to choose which variable is the independent variable. For example, if we know that

$$10A - 4B = 120$$

then we can think of A as a function of B and write

$$A = 0.4B + 12$$

or we can think of \boldsymbol{B} as a function of \boldsymbol{A} and write

$$B = 2.5A - 30$$

Glossary Terms

dependent variable

independent variable

Unit 5: Functions and Volume Lesson 3: Equations for Functions

NAME