NAME

DATE

PERIOD

### Unit 6, Lesson 8 Reasoning about Solving Equations (Part 2)

Let's use hangers to understand two different ways of solving equations with parentheses.

## 8.1 Equivalent to 2(x + 3)

Select **all** the expressions equivalent to 2(x + 3).

- 1.  $2 \cdot (x+3)$
- 2. (x+3)2
- 3.  $2 \cdot x + 2 \cdot 3$
- 4.  $2 \cdot x + 3$
- 5.  $(2 \cdot x) + 3$
- 6. (2 + x)3

## 8.2 Either Or

1. Explain why either of these equations could represent this hanger:



DATE

PERIOD

2. Find the weight of one circle. Be prepared to explain your reasoning.

# **8.3** Use Hangers to Understand Equation Solving, Again

Here are some balanced hangers. Each piece is labeled with its weight.



For each diagram:

1. Assign one of these equations to each hanger:

| 2(x+5) = 16       | 3(y+200) = 3,000                               |
|-------------------|------------------------------------------------|
| 20.8 = 4(z + 1.1) | $\frac{20}{3} = 2\left(w + \frac{2}{3}\right)$ |

2. Explain how to figure out the weight of a piece labeled with a letter by reasoning about the diagram.

| Ν | A          | М | E |
|---|------------|---|---|
|   | <i>'</i> ' |   | - |

DATE

PERIOD

3. Explain how to figure out the weight of a piece labeled with a letter by reasoning about the equation.

### **Lesson 8 Summary**

The balanced hanger shows 3 equal, unknown weights and 3 2-unit weights on the left and an 18-unit weight on the right.

There are 3 unknown weights plus 6 units of weight on the left. We could represent this balanced hanger with an equation and solve the equation the same way we did before.

3x + 6 = 183x = 12x = 4

Since there are 3 groups of x + 2 on the left, we could represent this hanger with a different equation: 3(x + 2) = 18.





The two sides of the hanger balance with these weights: 3 groups of x + 2 on one side, and 18, or 3 groups of 6, on the other side.



#### NAME

The two sides of the hanger will balance with  $\frac{1}{3}$  of the weight on each side:  $\frac{1}{3} \cdot 3(x+2) = \frac{1}{3} \cdot 18$ .

We can remove 2 units of weight from each side, and the hanger will stay balanced. This is the same as subtracting 2 from each side of the equation. DATE PERIOD x + 2 = 6 x + 2 = 4 + 2 x + 2 = 4 + 2 x + 2 = 4 + 2 x + 2 = 4 + 2 x + 2 = 4 + 2x + 2 = 4 + 2

An equation for the new balanced hanger is x = 4. This gives the solution to the original equation.

Here is a concise way to write the steps above:

| 3(x+2) = 18 |                                              |
|-------------|----------------------------------------------|
| x + 2 = 6   | after multiplying each side by $\frac{1}{3}$ |
| x = 4       | after subtracting 2 from each side           |