Unit 6, Lesson 15
 Efficiently Solving Inequalities

Let's solve more complicated inequalities.

15.1 Lots of Negatives

Here is an inequality: $-x \geq-4$.

1. Predict what you think the solutions on the number line will look like.
2. Select all the values that are solutions to $-x \geq-4$:
a. 3
b. -3
c. 4
d. -4
e. 4.001
f. -4.001
3. Graph the solutions to the inequality on the number line:

15.2 Inequalities with Tables

1. Let's investigate the inequality $x-3>-2$.

x	-4	-3	-2	-1	0	1	2	3	4
$x-3$	-7		-5				-1		1

a. Complete the table.
b. For which values of x is it true that $x-3=-2$?
c. For which values of x is it true that $x-3>-2$?
d. Graph the solutions to $x-3>-2$ on the number line:

2. Here is an inequality: $2 x<6$.
a. Predict which values of x will make the inequality $2 x<6$ true.
b. Complete the table. Does it match your prediction?

x	-4	-3	-2	-1	0	1	2	3	4
$2 x$									

c. Graph the solutions to $2 x<6$ on the number line:

3. Here is an inequality: $-2 x<6$.
a. Predict which values of x will make the inequality $-2 x<6$ true.
b. Complete the table. Does it match your prediction?

x	-4	-3	-2	-1	0	1	2	3	4
$-2 x$									

c. Graph the solutions to $-2 x<6$ on the number line:

d. How are the solutions to $2 x<6$ different from the solutions to $-2 x<6$?

15.3 Which Side are the Solutions?

1. Let's investigate $-4 x+5 \geq 25$.
a. Solve $-4 x+5=25$.
b. Is $-4 x+5 \geq 25$ true when x is 0 ? What about when x is 7 ? What about when x is -7 ?
c. Graph the solutions to $-4 x+5 \geq 25$ on the number line.

2. Let's investigate $\frac{4}{3} x+3<\frac{23}{3}$.
a. Solve $\frac{4}{3} x+3=\frac{23}{3}$.
b. Is $\frac{4}{3} x+3<\frac{23}{3}$ true when x is 0 ?
c. Graph the solutions to $\frac{4}{3} x+3<\frac{23}{3}$ on the number line.

3. Solve the inequality $3(x+4)>17.4$ and graph the solutions on the number line.

4. Solve the inequality $-3\left(x-\frac{4}{3}\right) \leq 6$ and graph the solutions on the number line.

$\Rightarrow \equiv$ Are you ready for more?

Write at least three different inequalities whose solution is $x>-10$. Find one with x on the left side that uses $\mathrm{a}<$.

Lesson 15 Summary

Here is an inequality: $3(10-2 x)<18$. The solution to this inequality is all the values you could use in place of x to make the inequality true.

In order to solve this, we can first solve the related equation $3(10-2 x)=18$ to get the solution $x=2$. That means 2 is the boundary between values of x that make the inequality true and values that make the inequality false.

To solve the inequality, we can check numbers greater than 2 and less than 2 and see which ones make the inequality true.

Let's check a number that is greater than 2: $x=5$. Replacing x with 5 in the inequality, we get $3(10-2 \cdot 5)<18$ or just $0<18$. This is true, so $x=5$ is a solution. This means that all values greater than 2 make the inequality true. We can write the solutions as $x>2$ and also represent the solutions on a number line:

Notice that 2 itself is not a solution because it's the value of x that makes $3(10-2 x)$ equal to 18 , and so it does not make $3(10-2 x)<18$ true.

For confirmation that we found the correct solution, we can also test a value that is less than 2 . If we test $x=0$, we get $3(10-2 \cdot 0)<18$ or just $30<18$. This is false, so $x=0$ and all values of x that are less than 2 are not solutions.

