NAME

DATE

PERIOD

#### Unit 5, Lesson 13 Expressions with Rational Numbers

Let's develop our signed number sense.

## 13.1 True or False: Rational Numbers

Decide if each statement is true or false. Be prepared to explain your reasoning.

- 1. (-38.76)(-15.6) is negative
- 2. 10,000 99,999 < 0
- 3.  $\left(\frac{3}{4}\right)\left(-\frac{4}{3}\right) = 0$
- 4. (30)(-80) 50 = 50 (30)(-80)

# **13.2** Card Sort: The Same But Different

Your teacher will give you a set of cards. Group them into pairs of expressions that have the same value.

NAME

DATE

PERIOD

### 13.3 Near and Far From Zero

| a              | b              | - <i>a</i> | -4 <i>b</i> | -a+b | $a \div -b$ | $a^2$ | <i>b</i> <sup>3</sup> |
|----------------|----------------|------------|-------------|------|-------------|-------|-----------------------|
| $-\frac{1}{2}$ | 6              |            |             |      |             |       |                       |
| $\frac{1}{2}$  | -6             |            |             |      |             |       |                       |
| -6             | $-\frac{1}{2}$ |            |             |      |             |       |                       |

- 1. For each set of values for *a* and *b*, evaluate the given expressions and record your answers in the table.
- 2. When  $a = -\frac{1}{2}$  and b = 6, which expression:

has the largest value? has the smallest value? is the closest to zero?

3. When  $a = \frac{1}{2}$  and b = -6, which expression:

has the largest value? has the smallest value? is the closest to zero?

4. When a = -6 and  $b = -\frac{1}{2}$ , which expression:

has the largest value? has the smallest value? is the closest to zero?

#### ➡ Are you ready for more?

Are there any values could you use for *a* and *b* that would make all of these expressions have the same value? Explain your reasoning.

NAME


DATE

PERIOD

## 13.4 Seagulls and Sharks Again

#### Interactive digital version available

a.openup.org/ms-math/en/s/ccss-7-5-13-4



A seagull has a vertical position *a*, and a shark has a vertical position *b*. Draw and label a point on the vertical axis to show the vertical position of each new animal.

1. A dragonfly at d, where d = -b

| NAME                                   | DATE | PERIOD |  |
|----------------------------------------|------|--------|--|
| 2. A jellyfish at $j$ , where $j = 2b$ |      |        |  |

- 3. An eagle at e, where  $e = \frac{1}{4}a$ .
- 4. A clownfish at *c*, where  $c = -\frac{a}{2}$
- 5. A vulture at v, where v = a + b
- 6. A goose at g, where g = a b

## Lesson 13 Summary

We can represent sums, differences, products, and quotients of rational numbers, and combinations of these, with numerical and algebraic expressions.

| Sums:                | Differences:         | Products:           | Quotients:                |
|----------------------|----------------------|---------------------|---------------------------|
| $\frac{1}{2}$ + (-9) | $\frac{1}{2}$ - (-9) | $(\frac{1}{2})(-9)$ | $(\frac{1}{2}) \div (-9)$ |
| -8.5 + x             | -8.5 - x             | -8.5x               | -8.5                      |

We can write the product of two numbers in different ways.

- By putting a little dot between the factors, like this:  $-8.5 \cdot x$ .
- By putting the factors next to each other without any symbol between them at all, like this: -8.5*x*.

We can write the quotient of two numbers in different ways as well.

- By writing the division symbol between the numbers, like this:  $-8.5 \div x$ .
- By writing a fraction bar between the numbers like this:  $\frac{-8.5}{x}$ .

х

| NAME | DATE | PERIOD |
|------|------|--------|
|      |      |        |

When we have an algebraic expression like  $\frac{-8.5}{x}$  and are given a value for the variable, we can find the value of the expression. For example, if x is 2, then the value of the expression is -4.25, because  $-8.5 \div 2 = -4.25$ .